onlinepornus.com

Hebrew University researchers discover promising treatment for aggressive brain tumours

December 13, 2018


Hebrew University Prof. Rotem Karni (right) and doctoral student Maxim Mogilevsky in the lab. (Hebrew University Courtesy)

Glioblastoma is a serious and incurable brain cancer.
Patients receiving this diagnosis typically have 11-20 months to live. One of the main difficulties in treating this cancer is that its cells quickly build up a resistance to chemotherapy.

In the upcoming issue of Nucleic Acids Research, Professor Rotem Karni and his team at Hebrew University’s Institute for Medical Research-Israel Canada (IMRIC) share promising results for a new glioblastoma treatment with the potential to improve and extend patients’ lives.

As part of their research, Karni and PhD student Maxim Mogilevsky designed a molecule that inhibits glioblastoma tumour growth by regulating the proteins it produces.

The MKNK2 gene produces two different protein products through
a process called “RNA alternative splicing”. These proteins have two opposing functions: MNK2a inhibits cancer growth, whereas MNK2b supports cancer growth.

Karni’s new molecule shifts the splicing of MKNK2 so that production of the
tumour-stimulating protein decreases, while production of the tumour- suppressing protein increases. As a result, cancerous tumours decrease or die-off completely.


“Not only can this breakthrough molecule kill tumour cells on its own, it has the power to help former chemotherapy-resistant cells become chemotherapy-sensitive once again,” shared Prof. Karni.


In his study, the mice with human glioblastoma tumour cells that were treated with this new molecule saw their tumours shrink or die off completely, as opposed to the control mice who were treated with an inactive molecule. “Our research presents a novel approach for glioblastoma treatment.

In the future, we’ll be able to tailor treatments for patients based on
the amount of cancer-inhibiting proteins that their tumours produce,” added Karni.


A patent for this technology has been registered and granted in the United States and Europe through Yissum, Hebrew University’s R&D company.