MIT_Sustaining-Climate-01-PRESS

Unknown Mechanism Impacting Earth’s Climate Revealed in New Study

In a recent study an unknown climate mechanism was discovered, offering insights into Earth’s past and present climate. The research focuses on the Cretaceous period when high atmospheric carbon dioxide levels prevailed. By studying how large ocean currents transported warm water, the study highlights their crucial role in shaping temperature gradients. The findings suggest that continental shifts during the Cretaceous disrupted these currents, leading to significant temperature differences between the poles and the tropics. This research not only enhances our understanding of past climate but also underscores the importance of ocean currents in shaping today’s climate systems.

[Jerusalem] – A research study conducted by Hebrew University’s Ph.D. candidate, Kaushal Gianchandani, under the guidance of Professors Nathan Paldor and Hezi Gildor from the Institute of Earth Sciences at the Hebrew University, in collaboration with Prof. Ori Adam and Sagi Maor from the Hebrew University along with Dr Alexander Farnsworth and Prof. David Lunt from the University of Bristol, UK, has unveiled a previously unknown mechanism that significantly influences Earth’s climate. This cutting-edge research, published in Nature Communication, applies a novel analytic model developed by the three Hebrew University researchers two years ago, focusing on wind-driven circulation at the ocean’s surface and highlighting the pivotal role of ocean basin geometry.

This study explores the climate during the Cretaceous period, around 145 to 66 million years ago, when there was a lot of a carbon dioxide (warming gas) in the air. It looks at how big ocean swirls, which move warm water from the tropics to the poles, influenced the temperature difference between these two regions. This temperature difference is crucial for understanding why there were so many different kinds of plants and animals during the Cretaceous period.

In their research, the scientists aimed to uncover the complex relationship between changes in ocean current patterns (gyral circulation) that result from the arrangement of continents on Earth and variations in temperature gradients during the Cretaceous era when dinosaurs roamed the Earth. To do this, they conducted a thorough analysis using computer models that simulate ancient climates. Their findings revealed that the movement of Earth’s continents during the Cretaceous period caused a slowdown in the large swirling ocean currents responsible for carrying warm water from the equator to the poles. This slowdown disrupted the way the ocean regulated its surface temperatures, resulting in a significant increase in temperature differences between the poles and the tropics during that time. These findings align with geological evidence from the Cretaceous era, providing a more comprehensive understanding of past climate dynamics.

Key takeaways:

Discovery of a Previously Unknown Mechanism: The study has unveiled a previously unknown mechanism that significantly influenced Earth’s climate during the Cretaceous period. This mechanism is related to changes in the distribution of the continents which affects ocean current patterns and their impact on temperature gradients.

Implications for Contemporary Climate: While the study primarily focuses on the Cretaceous period, it has implications for our understanding of contemporary climate systems. It highlights the importance of ocean gyres (circulation patterns) in shaping climate dynamics, both in the past and today. It underscores the complexity of Earth’s climate and the strong effect that processes other than CO2 concentration might have on it.

Focus on Cretaceous Period: The research primarily focuses on the climate during the Cretaceous period, which occurred approximately 145 to 66 million years ago. This period is of interest because it was characterized by high levels of carbon dioxide in the atmosphere, which is a greenhouse gas that can influence global temperatures.

Role of Ocean Swirls (Gyral Circulation): The study investigates the role of large ocean swirls, known as gyral circulation, in transporting warm water from the tropics to the poles. Understanding how these currents influenced temperature differences between the poles and the tropics is crucial for comprehending the biodiversity and climate of the Cretaceous period.

Impact of Continental Movement: The research findings suggest that the movement of Earth’s continents during the Cretaceous period disrupted the large ocean currents responsible for transporting warm water. This disruption led to significant increases in temperature differences between the poles and the tropics during that time.

Validation with Geological Evidence: The study’s findings align with geological evidence from the Cretaceous era, providing further support for the proposed mechanisms and enhancing our understanding of past climate dynamics.
In summary, this research helps us gain insights into the complex relationship between ocean circulation patterns, equator-to-pole temperature differences, and past climate conditions. While it primarily contributes to our understanding of Earth’s ancient climate, it also underscores the significance of oceanic processes in shaping contemporary climate systems. This knowledge can potentially aid in modeling and predicting the impacts of climate change in the modern era, as ocean circulation patterns continue to play a crucial role in regulating global climate.

The study, titled “Effects of paleogeographic changes and CO2 variability on northern mid-latitudinal temperature gradients in the Cretaceous” has been published in Nature Communications and can be found at https://www.nature.com/articles/s41467-023-40905-7

Research Team: Kaushal Gianchandani-1, Sagi Maor-1, Ori Adam-1, Alexander Farnsworth-2,3, Hezi Gildor-1, Daniel J. Lunt-2 & Nathan Paldor

Institutions:
1- Institute of Earth Sciences, Hebrew University of Jerusalem
2- School of Geographical Sciences and Cabot Institute, University of Bristol
3-State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing

The Hebrew University of Jerusalem is Israel’s premier academic and research institution. With over 25,000 students from 90 countries, it is a hub for advancing scientific knowledge and holds a significant role in Israel’s civilian scientific research output, accounting for nearly 40% of it and has registered over 11,000 patents. The university’s faculty and alumni have earned eight Nobel Prizes and a Fields Medal, underscoring their contributions to ground-breaking discoveries. In the global arena, the Hebrew University ranks 86th according to the Shanghai Ranking. To learn more about the university’s academic programs, research initiatives, and achievements, visit the official website at http://new.huji.ac.il/en

Scroll to Top